Bayesian pseudo-empirical-likelihood intervals for complex surveys
نویسندگان
چکیده
منابع مشابه
Bayesian pseudo-empirical-likelihood intervals for complex surveys
Bayesian methods for inference on finite population means and other parameters by using sample survey data face hurdles in all three phases of the inferential procedure: the formulation of a likelihood function, the choice of a prior distribution and the validity of posterior inferences under the design-based frequentist framework. In the case of independent and identically distributed observat...
متن کاملPseudo-empirical likelihood ratio confidence intervals for complex surveys
The authors show how an adjusted pseudo-empirical likelihood ratio statistic that is asymptotically distributed as a chi-square random variable can be used to construct confidence intervals for a finite population mean or a finite population distribution function from complex survey samples. They consider both non-stratified and stratified sampling designs, with or without auxiliary information...
متن کاملGeneralized pseudo empirical likelihood inferences for complex surveys
We consider generalized pseudo empirical likelihood inferences for complex surveys. The method is based on a weighted version of the Kullback-Leibler (KL) distance for calibration estimation (Deville and Särndal, 1992) and includes the pseudo empirical likelihood estimator (Chen and Sitter, 1999; Wu and Rao, 2006) and the calibrated likelihood estimator (Tan, 2013) as special cases. We show tha...
متن کاملPseudo–Empirical Likelihood Inference for Multiple Frame Surveys
This article presents a pseudo–empirical likelihood approach to inference for multiple-frame surveys. We establish a unified framework for point and interval estimation of finite population parameters, and show that inferences on the parameters of interest making effective use of different types of auxiliary population information can be conveniently carried out through the constrained maximiza...
متن کاملEmpirical likelihood confidence intervals for complex sampling designs
We define an empirical likelihood approach which gives consistent design-based confidence intervals which can be calculated without the need of variance estimates, design effects, resampling, joint inclusion probabilities and linearization, even when the point estimator is not linear. It can be used to construct confidence intervals for a large class of sampling designs and estimators which are...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the Royal Statistical Society: Series B (Statistical Methodology)
سال: 2010
ISSN: 1369-7412
DOI: 10.1111/j.1467-9868.2010.00747.x